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Review: Unconditional LMs

A language model assigns probabilities to sequences of
words, w = (w1, Wws, ..., W)

We saw that it is helpful to decompose this probability
using the chain rule, as follows:

p(w) :p(wl) X p(wg | wl) X p(w3 ‘ wl,wg) X o+ X

plwe | wi, ... we 1)

]

— Hp(wt | Wi, ... 7wt—1)
t=1

This reduces the language modeling problem to modeling
the probability of the next word, given the history of
preceding words.



Unconditional LMs with RNNs
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Conditional LMs

A conditional language model assigns probabilities to
sequences of words, w = (w1, ws, ..., we), given some
conditioning context, @.

As with unconditional models, it is again helpful to use

the chain rule to decompose this probabillity:
¢

p(’UJ ‘ ’CB) — Hp(wt | L, Wy1,W2, ... 7wt—1)
t=1
What is the probability of the next word, given the history of
previously generated words and conditioning context x?



Conditional LMs

X “input” w “text output”
An author A document written by that author
A topic label An article about that topic

{SPAM, NOT_SPAM}

A sentence in French

A sentence in English

A sentence in English

An image

A document

A document

Meterological measurements
Acoustic signal
Conversational history + database
A question + a document

A question + an image

An emaill

ts English translation

ts French translation

ts Chinese translation

A text description of the image
Its summary

lts translation

A weather report

Transcription of speech
Dialogue system response

[S answer

ts answer
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Conditional LMs

X “input” w “text output”
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Data for training conditional LMs

To train conditional language models, we need paired

samples, {(x;, w;)};w ;.

Data availability varies. |t
could be solved by conditi
data just doesn't exist.

Relatively large amounts o

s easy to think of tasks that
onal language models, but the

- data for:

Translation, summarisatl
speech recognition

on, caption generation,



Algorithmic challenges

We often want to find the most likely w given some x. This
'S unfortunately generally an intractable problem.

w* = argmaxp(w | x)
w

We theretore approximate it using a beam search or with
Monte Carlo methods since w'® ~ p(w | x) is often
computationally easy.

Improving search/inference is an open research question.

How can we search more etfectively?
Can we get guarantees that we have found the max”
Can we limit the model a bit to make search easier?



Evaluating conditional LMs

How good is our conditional language model?

These are language models, we can use cross-entropy
or perplexity. okay to implement, hard to interpret

Task-specific evaluation. Compare the model’'s most likely

output to human-generated expected output using a
task-specific evaluation metric L.

w* = arg mgxp(w \ il?‘) L("U*awref)

Examples of L: BLEU, METEOR, WER, ROUGE.
easy to implement, okay to interpret

Human evaluation. | |
hard to implement, easy to interpret
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These are language models, we can use cross-entropy
or perplexity. oKay to Implement, hard to interpret

Task-specific evaluation. Compare the model’'s most likel
output to human-generated expected output using a
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Lecture overview

The rest of this lecture will look at “encoder-decoder”
models that learn a function that maps « into a fixed-size
vector and then uses a language model to “decode”

that vector into a sequence of words, w.

 Kunst kann nicht gelehrt werden...
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w Artistry can’t be taught...




Lecture overview

The rest of this lecture will look at “encoder-decoder”
models that learn a function that maps « into a fixed-size
vector and then uses a language model to “decode”

that vector into a sequence of words, w.
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Lecture overview

WO questions

e How do we encode « as a fixed-size vector, c?
- Problem (or at least modality) specitic

- Think about assumptions

 How do we condition on c in the decoding
model?

- Less problem specific
- We will review solution/architectures



Kalchbrenner and Blunsom 2013

Encoder
c = embed(x)
s = Vc

Recurrent connection

Recurrent decoder Embedding of w1

Source sentence

I
h; = g(Wlh;_1;wi_1] +s + b))
u; = Ph; + b’ Learnt bias

p(Wy | ¢, w<;) = softmax(uy)

Recall unconditional RNN
h; = g(Wlh;_1; w;_1] + b])




K&B 2013: Encoder

How should we define ¢ = embed(x)?

The simplest model possible:

c:;Xi
N
BEEEE

What do you think of this model?



K&B 2013: CSM Encoder

How should we define ¢ = embed(x)?

Convolutional sentence model (CSM)

® ® o o o o E€ 1 T2 T3
the cat sat on the mat



K&B 2013: CSM Encoder

e Good

e Convolutions learn interactions among features in a local
context

« By stacking them, longer range dependencies can be learnt

 Deep ConvNets have a branching structure similar to trees,
but no parser is required

 Bad

e Sentences have different lengths, need different depth trees;
convnets are not usually so dynamic, but see”

* Kalchbrenner et al. (2014). A convolutional neural network for modelling sentences. In Proc. ACL.



K&B 2013: RNN Decoder

Recurrent connection

Recurrent decoder Embedding of w1

Source sentence

I
h; = g(Wlh;_1;wi_1] +s + b))
u; = Ph; + b’ Learnt bias

p(Wy | ¢, w<;) = softmax(uy)



K&B 2013: RNN Decoder
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K&B 2013: RNN Decoder

p(tom | s, (s))




K&B 2013: RNN Decoder
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K&B 2013: RNN Decoder
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K&B 2013: RNN Decoder

p(tom | s, (s)) xp(likes | s, (s), tom)
xp(beer | s, (s), tom, likes)
xp({\s) | s, (s), tom, likes, beer)




Sutskever et al. (2014)

LSTM encoder
(co,hp) are parameters

(ci,h;) = LSTM(2;,¢;—1,h;_1)
The encoding is (c¢,hy) where ¢ = |x|.

LSTM decoder
wo = (s)
(Ct+£, ht+€) — LSTM(wt—la Ctir—1, ht—|—€—1)
u; = Ph;,,+Db

p(Wy | &, w-¢) = softmax(uy)



Sutskever et al. (2014)
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Sutskever et al. (2014)
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Sutskever et al. (2014)
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Sutskever et al. (2014)
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Sutskever et al. (2014)

 Good
 RNNs deal naturally with sequences of various lengths

 LSTMs in principle can propagate gradients a long
distance

e \ery simple architecture!

e Bad

e The hidden state has to remember a lot of information!
(We will return to this problem on Thursday.)



Sutskever et al. (2014): Tricks
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Sutskever et al. (2014): Tricks

Read the input sequence “backwards”: +4 BLEU

Beginnings||are| |difficult| | STOP
N\ \3\

y y
START —>6—>6—>6—>6
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J J J J
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Sutskever et al. (2014): Tricks

Use an ensemble of J independently trained models.
Ensemble of 2 models: +3 BLEU
Ensemble of 5 models: +4.5 BLEU

Decoder:

(C(j) h) ) = LSTM(j)(wt_l, cl)

t+0° “t4-4

1 J
__E: (47
Uy = J?VthlJ

p(Wy | ¢, w<;) = softmax(uy)

t+0—17 “t+4+4—1



A word about decoding

In general, we want to find the most probable (MAP) output
given the input, I.e.

w”* = argmax p(w | x)
w

|w|

— arg max g log p(wy | &, w)
w
t=1



A word about decoding

In general, we want to find the most probable (MAP) output
given the input, I.e.

w”* = argmax p(w | x)
w

w]
= arg mgleogp(wt |z, wey)

This is, for general RNNs, a hard problem. We therefore

approximate it with a greedy search:

wi = argmax p(wy | )
w1
w} = argmaxp(uwy | @, w})

w2

w; = arg I?Uaxp(wt |z, wy)
2



A word about decoding

In general, we want to find the most probable (MAP) output
given the input, I.e.

w”* = argmax p(w | x)
w

|w|

— arg max g log p(wy | &, w)
w
t=1

o undecidable :ﬁ
This is, for general RNNs, a hard problem. We therefore

approximate it with a greedy search:

wi = argmax p(wy | )
w1

ws = argmax p(ws | z,w})
2

w; = arg I?Uaxp(wt |z, wy)
2



A word about decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of top b hypothesis.

E.Q., for b=2:

xr = Bier trinke ich
beer drink |

(s)
logprob=0
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A word about decoding

A slightly better approximation is to use a beam search with
beam size b. Key idea: keep track of top b hypothesis.

E.Q., for b=2:
xr = Bier trmke ich [ drink Jrink
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Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU

xr = Bier trinke ich

beer drink

(s)
logprob=0
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drink
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I
logprob=-2.11

I
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like
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beer

logprob=-8.66

drink
logprob=-2.87
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logprob=-3.04

wWIne

logprob=-5.12

ws




Image caption generation

 Neural networks are great for working with multiple
modalities—everything is a vector!

* Image caption generation can therefore use the same
techniques as translation modeling

A word about data
* Relatively few captioned images are available

* Pre-train image embedding model using another
task, like image identification (e.g., ImageNet)



Kiros et al. (2013)

* Looks a lot like Kalchbrenner and Blunsom (2013)
* convolutional network on the input
* n-gram language model on the output

* Innovation: multiplicative interactions in the
decoder n-gram model



Kiros et al. (2013)

Encoder x = embed(x)



Kiros et al. (2013)

Encoder x = embed(x)

Unconditional n-gram LM:  Embedaing of ws_;

p(Wt | L, W

h; = W\wW;_,,11; Wi—pni2; ..

Uy

t—1
t—nm+1

)

Ph, + b

softmax(uy)

~

-§Wt—1]
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Kiros et al. (2013)

Encoder x = embed(x)

Simple conditional n-gram LM:
h; = W[Wt—n+1; Wi _nt+25..- §Wt—1] +Cx
u; = Ph; +b

p(Wy | z,w;”,, ;) = softmax(uy)

Multiplicative n-gram LM:
T="T4,w
Wi = T4, j,wlj

what’s the intuition here?
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Encoder x = embed(x)

Simple conditional n-gram LM:
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Kiros et al. (2013)

Encoder x = embed(x)

Simple conditional n-gram LM:
ht — W[Wt_n_|_1; Wi_n+25... ;Wt—l] —|—CX
u; = Ph; +b

p(Wy | z,w;”,, ;) = softmax(uy)

Multiplicative n-gram LM:
W; = Uqy,iV; 4 (U - R|V|Xd, V & Rka)

'y — W[Wt—n+1§ Wit _nt25--. §Wt—1] + Cx
ht — (Wfrrt) O (meX)
u; = Ph; +b

p(Wi | ¢, w¢) = softmax(uy)



Kiros et al. (2013)

* [wo take-home messages:

* Feed-forward n-gram models can be used in
place of RNNs in conditional models

* Modeling interactions between input modalities
holds a ot of promise

* Although MLP-type models can approximate
higher order tensors, multiplicative models
appear to make learning interactions easier



Questions?



