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A language model assigns probabilities to sequences of  
words,                                  .w = (w1, w2, . . . , w`)

p(w) = p(w1)⇥ p(w2 | w1)⇥ p(w3 | w1, w2)⇥ · · ·⇥
p(w` | w1, . . . , w`�1)

=

|w|Y

t=1

p(wt | w1, . . . , wt�1)

We saw that it is helpful to decompose this probability  
using the chain rule, as follows:

This reduces the language modeling problem to modeling  
the probability of the next word, given the history of  
preceding words.

Review: Unconditional LMs



Unconditional LMs with RNNs

h2h1

h0

h3 h4

softmax

w1 w2 w3 w4

w4w3w2w1

p(W5|w1,w2,w3,w4)z }| {

vector 
(word embedding)

observed 
context word

random variable

RNN hidden state vector, length=|vocab|



A conditional language model assigns probabilities to 
sequences of words,                                  , given some 
conditioning context,    .

w = (w1, w2, . . . , w`)

Conditional LMs

p(w | x) =
Ỳ

t=1

p(wt | x, w1, w2, . . . , wt�1)

As with unconditional models, it is again helpful to use  
the chain rule to decompose this probability:

What is the probability of the next word, given the history of  
previously generated words and conditioning context    ?

x

x



Conditional LMs
      “input”       “text output”
An author A document written by that author
A topic label An article about that topic
{SPAM, NOT_SPAM} An email
A sentence in French Its English translation
A sentence in English Its French translation
A sentence in English Its Chinese translation
An image A text description of the image
A document Its summary
A document Its translation
Meterological measurements A weather report
Acoustic signal Transcription of speech
Conversational history + database Dialogue system response
A question + a document Its answer
A question + an image Its answer

x w
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Data for training conditional LMs

To train conditional language models, we need paired  
samples,                     .{(xi,wi)}Ni=1

Data availability varies. It’s easy to think of tasks that  
could be solved by conditional language models, but the  
data just doesn’t exist.

Relatively large amounts of data for:
Translation, summarisation, caption generation,  
speech recognition



Algorithmic challenges

w

⇤
= argmax

w
p(w | x)

We often want to find the most likely      given some    . This  
is unfortunately generally an intractable problem.

w x

We therefore approximate it using a beam search or with  
Monte Carlo methods since                           is often  
computationally easy. 

w

(i) ⇠ p(w | x)

Improving search/inference is an open research question.
How can we search more effectively?
Can we get guarantees that we have found the max?
Can we limit the model a bit to make search easier?



Evaluating conditional LMs
How good is our conditional language model?

These are language models, we can use cross-entropy  
or perplexity.

Task-specific evaluation. Compare the model’s most likely 
output to human-generated expected output using a  
task-specific evaluation metric    .

w

⇤
= argmax

w
p(w | x)

L

L(w⇤,wref)

Examples of    : BLEU, METEOR, WER, ROUGE.

Human evaluation.

okay to implement, hard to interpret

easy to implement, okay to interpret

hard to implement, easy to interpret

L
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Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps     into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words,    .w

x

Kunst kann nicht gelehrt werden…

Artistry can’t be taught…

x

w



Lecture overview
The rest of this lecture will look at “encoder-decoder”  
models that learn a function that maps     into a fixed-size  
vector and then uses a language model to “decode”  
that vector into a sequence of words,    .w

x

A dog is playing on the beach.

x

w



• Two questions 

• How do we encode    as a fixed-size vector,   ? 

• How do we condition on    in the decoding 
model?

Lecture overview

x c

c

- Problem (or at least modality) specific
- Think about assumptions

- Less problem specific
- We will review solution/architectures



Kalchbrenner and Blunsom 2013

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)



K&B 2013: Encoder
How should we define                        ?c = embed(x)

The simplest model possible:

What do you think of this model?

x1

x1 x2 x3 x4 x5 x6

x2 x3 x4 x5 x6

c =
X

i

xi



K&B 2013: CSM Encoder
How should we define                        ?c = embed(x)

Convolutional sentence model (CSM)



K&B 2013: CSM Encoder

• Good

• Convolutions learn interactions among features in a local 
context 

• By stacking them, longer range dependencies can be learnt 

• Deep ConvNets have a branching structure similar to trees, 
but no parser is required 

• Bad 

• Sentences have different lengths, need different depth trees; 
convnets are not usually so dynamic, but see*

* Kalchbrenner et al. (2014). A convolutional neural network for modelling sentences. In Proc. ACL.



K&B 2013: RNN Decoder

c = embed(x)

s = Vc

Encoder

Recurrent decoder
Source sentence

Embedding of wt�1

Recurrent connection

Recall unconditional RNN
ht = g(W[ht�1;wt�1] + b])

Learnt bias
ht = g(W[ht�1;wt�1] + s+ b])

ut = Pht + b0

p(Wt | x,w<t) = softmax(ut)
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K&B 2013: RNN Decoder
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K&B 2013: RNN Decoder
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Sutskever et al. (2014)
LSTM encoder

LSTM decoder

(c0,h0) are parameters

The encoding is               where             .

w0 = hsi

(ci,hi) = LSTM(xi, ci�1,hi�1)

(ct+`,ht+`) = LSTM(wt�1, ct+`�1,ht+`�1)

(c`,h`) ` = |x|

ut = Pht+` + b

p(Wt | x,w<t) = softmax(ut)
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Sutskever et al. (2014)

• Good

• RNNs deal naturally with sequences of various lengths 

• LSTMs in principle can propagate gradients a long 
distance 

• Very simple architecture! 

• Bad 

• The hidden state has to remember a lot of information! 
(We will return to this problem on Thursday.)
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Aller Anfang ist schwer

are

        STOP

         START

difficult          STOPBeginnings

c

Sutskever et al. (2014): Tricks
Read the input sequence “backwards”: +4 BLEU



Sutskever et al. (2014): Tricks

Ensemble of 2 models: +3 BLEU

Decoder:

u(j)
t = Ph(j)

t + b(j)

ut =
1

J

JX

j0=1

u(j0)

p(Wt | x,w<t) = softmax(ut)

Ensemble of 5 models: +4.5 BLEU

Use an ensemble of J independently trained models.

(c(j)t+`,h
(j)
t+`) = LSTM(j)(wt�1, c

(j)
t+`�1,h

(j)
t+`�1)



A word about decoding

w

⇤
= argmax

w
p(w | x)

= argmax

w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.
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w

⇤
= argmax

w
p(w | x)

= argmax

w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.

This is, for general RNNs, a hard problem. We therefore 
approximate it with a greedy search:

w⇤
1 = argmax

w1

p(w1 | x)

w⇤
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w2

p(w2 | x, w⇤
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.
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A word about decoding

w

⇤
= argmax

w
p(w | x)

= argmax

w

|w|X

t=1

log p(wt | x,w<t)

In general, we want to find the most probable (MAP) output  
given the input, i.e.

This is, for general RNNs, a hard problem. We therefore 
approximate it with a greedy search:

w⇤
1 = argmax

w1

p(w1 | x)

w⇤
2 = argmax

w2

p(w2 | x, w⇤
1)

.

.

.

w⇤
t = argmax

w2

p(wt | x,w⇤
<t)

undecidable :(



A word about decoding
A slightly better approximation is to use a beam search with 
beam size b. Key idea: keep track of top b hypothesis.

E.g., for b=2:

w0 w1 w2 w3

hsi
logprob=0

x = Bier trinke ich
beer drink I
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Sutskever et al. (2014): Tricks

Use beam search: +1 BLEU

hsi
logprob=0

logprob=-2.11

x = Bier trinke ich
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logprob=-1.82
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w0 w1 w2 w3



• Neural networks are great for working with multiple 
modalities—everything is a vector! 

• Image caption generation can therefore use the same 
techniques as translation modeling 

• A word about data 

• Relatively few captioned images are available 

• Pre-train image embedding model using another 
task, like image identification (e.g., ImageNet)

Image caption generation



Kiros et al. (2013)

• Looks a lot like Kalchbrenner and Blunsom (2013) 

• convolutional network on the input 

• n-gram language model on the output 

• Innovation: multiplicative interactions in the 
decoder n-gram model



Encoder
Kiros et al. (2013)

x = embed(x)



Encoder
Kiros et al. (2013)

x = embed(x)

Unconditional n-gram LM:
ht = W[wt�n+1;wt�n+2; . . . ;wt�1]

ut = Pht + b

p(Wt | x,wt�1
t�n+1) = softmax(ut)

Embedding of wt�1
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p(Wt | x,wt�1
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wi = ri,w

wi = ri,j,wxj

what’s the intuition here?

+Cx
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Kiros et al. (2013)

• Two take-home messages: 

• Feed-forward n-gram models can be used in 
place of RNNs in conditional models 

• Modeling interactions between input modalities 
holds a lot of promise 

• Although MLP-type models can approximate 
higher order tensors, multiplicative models 
appear to make learning interactions easier



Questions?


